
 CS562 – Report
 Mikel Sertutxa

1

CS562 – Final Project: Rendering Water as a
Post-Process Effect

PROBLEM DESCRIPTION:

 The objective of this project is to render realistic looking water. To do so, the paper suggests to

render it as a post-processing effect and to make use of height maps to approximate the waves of the

water.

PREVIOUS PAPER IMPLEMENTATION:

 The first paper that I selected was ‘Using Vertex Texture Displacement for Realistic Water

Rendering’ by Yuri Kryachko. In contrast with the actual implemented one, this paper suggests modifying

geometry of a plane to mimic realistic waves.

Waves
 To obtain realistic water, complex waves need to be mimicked. These waves can be decomposed

onto waves of different frequencies. In fact, there are waves of pure frequencies (also called pure tones

in psychoacoustics) which are sinusoidal waveforms. So, the idea is to define some waves and add them

to obtain this complex waves. This could be made using Fast Fourier Transform (FFT), but as it could be

heavy computationally, the paper suggests to approach it using height maps.

Pure frequencies of a

wave - But what is the

Fourier Transform? A

visual introduction

 CS562 – Report
 Mikel Sertutxa

2

Height Maps
 Height maps are grayscale textures that in this case, store heights of the waves. So, to mimic the

addition of waves of different frequencies, height maps of different frequencies are going to be added

instead. These will not give results as realistic as using fluid dynamics or FFT, but for real time applications

is more than enough. Height maps can be done by an artist or with a perlin noise. In the second option,

textures can be accessed multiple times, each with different texture coordinate sizes to sample them in

different frequencies.

 The goal is to obtain animated water. That is why, three parameters are necessary to access height

maps: position in the x and y axes and time. With the time, texture coordinates can be modified over time

to get moving waves.

𝐻𝑒𝑖𝑔ℎ𝑡 =
1

𝑁
∑ℎ(𝑥𝑖 , 𝑦𝑖,𝑡)

𝑁

𝑖=1

Modifying Geometry
 Once the height map is computed the paper suggests to modify geometry in vertex shader to

obtain waves. The mesh to use is a little special though. For the sake of having Level of Detail (LOD), the

author explains how to use radial meshes, which store polar coordinates of each point and the radius of

the circumferences. This radius gets higher while the vertices get farther from the camera. In this way,

only by locating the mesh at the center of the camera, a simple LOD is obtained.

ACTUAL SELECTED PAPER IMPLEMENTATION:

 While implementing the first paper, I come across with the actual paper I implemented ‘Rendering

Water as a Post-Process Effect’ by Myopic Rhino. I found it more interesting and complete than the

previous paper. So, although it does not modify the geometry itself to get actual waves, it explains how

to implement optics, which is essential to get good looking water. So, I stick with this second approach,

but maintaining the computation of the height map as a previous render pass. Note that all the

computations will take place on the fragment shader and in world space.

Obtaining geometry
 As it is a post processing effect, geometry needs to be constructed from scratch using the depth

buffer from the GBuffer and the height map. The idea is to approximate the waves iteratively by tracing

rays.

 CS562 – Report
 Mikel Sertutxa

3

Water does not affect the fragments above the max wave amplitude, so they need to be

discarded. The result will only be between the sea level and the given max amplitude.

 For getting the position out of the height map, first an intersection between the vector from view

to the fragment and the sea level needs to be computed. Using the x and z component of the computed

surface position, the height map can be sampled. Get the next surface level by adding the current one and

the height given by the height map. Take into account that the height map is between 0 and 1, so the

height value needs to be multiplied by the max wave amplitude before the addition. Then, repeat the

process N times, each time intersecting the vector with the new surface level. As it will be repeated several

times, it could happen that the wave gets above the wave amplitude. To prevent that, divide the height

to be added by N.

Normal
 Once that the surface position on the wave is computed, to obtain good results in the optics and

on lighting, normal needs to be computed. To do so, the information of the neighborhood pixels is needed.

Sample the points close to the actual texture coordinates in the x and in the y axes. These values describe

how the normal changes in the x and z components, so by subtracting them, the actual components are

obtained. For the y component, a scaling factor is used to obtain smoother or harder normal. It is a user

defined parameter.

𝑁𝑜𝑟𝑚𝑎𝑙 = 𝑣𝑒𝑐3(𝑊𝑒𝑠𝑡 − 𝐸𝑎𝑠𝑡, 𝑁𝑜𝑟𝑚𝑎𝑙𝑆𝑐𝑎𝑙𝑒, 𝑆𝑜𝑢𝑡ℎ − 𝑁𝑜𝑟𝑡ℎ)

 Although this normal is more than enough to get good looking water, the paper suggests using

normal maps to obtain even more realistic water, as the look with the previous normal could be a little

like plastic. However, to extract normals from the normal map, tangent and bitangents are needed and

therefore computed in the fragment shader. For that, the paper suggests following the method described

in the article ‘Normal Mapping Without Precomputed Tangents’ by Christian Schüler.

Schüler explains a method that obtains tangents and bitangents from perturbed normals. Tangent

and bitangents are the gradient of the texture coordinates. So, putting them as a function of the position

we get this:

𝑇 = ∇𝑢 𝐵 = ∇𝑣

𝑑𝑢 = 𝑇 ∙ 𝑑𝑝 𝑑𝑣 = 𝐵 ∙ 𝑑𝑝

Valid and invalid

fragments

 CS562 – Report
 Mikel Sertutxa

4

Introducing the fragment differences in the equations above we get the following linear systems.

∆𝑢𝑣1 = 𝑑𝐹𝑑𝑥(𝑢𝑣); ∆𝑢𝑣2 = 𝑑𝐹𝑑𝑦(𝑢𝑣); ∆𝑝1 = 𝑑𝐹𝑑𝑥(𝑝); ∆𝑝2 = 𝑑𝐹𝑑𝑦(𝑝)

{

∆𝑢𝑣1. 𝑥 = 𝑇 ∙ ∆𝑝1
∆𝑢𝑣2. 𝑥 = 𝑇 ∙ ∆𝑝2
𝑇 ∙ (∆𝑝1 × ∆𝑝2) = 0

{

∆𝑢𝑣1. 𝑦 = 𝐵 ∙ ∆𝑝1
∆𝑢𝑣2. 𝑦 = 𝐵 ∙ ∆𝑝2
𝐵 ∙ (∆𝑝1 × ∆𝑝2) = 0

 Note that the 3rd equation is introduced to maintain the orthogonality with the normal. Now solve

for T and B:

𝑇 = (
∆𝑝1
∆𝑝2

∆𝑝1 × ∆𝑝2

)

−1

(
∆𝑢𝑣1. 𝑥
∆𝑢𝑣2. 𝑥
0

)

𝐵 = (

∆𝑝1
∆𝑝2

∆𝑝1 × ∆𝑝2

)

−1

(
∆𝑢𝑣1. 𝑦
∆𝑢𝑣2. 𝑦
0

)

 With these systems, it is possible to obtain tangent and bitangents, which is in fact what the

paper uses. However, computing an inverse matrix per pixel each time can be quite expensive. That is

why, in a follow up article in 2013, ‘Followup: Normal Mapping Without Precomputed Tangents’, Schüler

explains some simplifications, which turn out in the next equation

𝑇 =
1

|∆𝑝1 × ∆𝑝2|
2
(

∆𝑝1⊥
∆𝑝2⊥

∆𝑝1 × ∆𝑝2

)

𝑇

(
∆𝑢𝑣1. 𝑥
∆𝑢𝑣2. 𝑥
0

)

𝐵 =
1

|∆𝑝1 × ∆𝑝2|
2
(

∆𝑝1⊥
∆𝑝2⊥

∆𝑝1 × ∆𝑝2

)

𝑇

(
∆𝑢𝑣1. 𝑦
∆𝑢𝑣2. 𝑦
0

)

 Finally, this article applies some optimizations. As the last row of the matrix will be multiplied by

zero, it can be skipped. He also treats the determinant as a scalar to preserve the relation between the

lengths of both vectors. For that, he takes the maximum out of both tangent and bitangent.

 CS562 – Report
 Mikel Sertutxa

5

Optics: Reflection
Reflection are obtained in the most naïve way. The paper suggests to render the whole scene with

a flipped camera below the sea level.

 On the water pass, sample the reflection map by projecting the water surface position onto the

flipped view. To give the sensation of irregular reflections, modify slightly the textures applying sinusoidal

movements as well as using the surface normal to transform it. To have it animated is important to use

time in this modification.

Optics: Refraction
 The refraction makes uses of the result of the lighting pass to get the information of the bottom

of the sea. Once again, this textures needs to be modified to be more irregular and hence, more realistic.

However, the refraction will also be in charge of giving the actual color to the water itself. First, perform

a mix between the refracted texture and the surface color (water color in shallow waters). As the mixing

factor, use the division between accumulated water (the length between the fragment position and the

water surface) and visibility (variable set by user to determine how visible is the depth of the water).

 𝑐𝑜𝑙𝑜𝑟 = 𝑚𝑖𝑥 (𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝐶𝑜𝑙𝑜𝑟, 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝐶𝑜𝑙𝑜𝑟, 𝑐𝑙𝑎𝑚𝑝 (
𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑢𝑟𝑓𝑎𝑐𝑒−𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡)

𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦
, 0, 1))

 Once the mix is computed, another mix is needed. This time, it will be used to differentiate shallow

from deep waters. For that, use the previous result and a new user defined big depth color. The mixing

factor this time will be a division between the depth of the water (difference between the y components

of surface and fragment positions) and extinction.

𝑐𝑜𝑙𝑜𝑟 = 𝑚𝑖𝑥 (𝑐𝑜𝑙𝑜𝑟, 𝑏𝑖𝑔𝐷𝑒𝑝𝑡ℎ𝐶𝑜𝑙𝑜𝑟, 𝑐𝑙𝑎𝑚𝑝 (
(𝑠𝑢𝑟𝑓𝑎𝑐𝑒. 𝑦 − 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡. 𝑦)

𝐸𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛
, 0, 1))

 Extinction tries to mimic the fact that not all colors fade out at the same rate on water. For

example, the green and blue colors fade out much slower than the reddish ones. So, the extinction is a

variable that the user needs to set to each color component.

Reflection Map Scheme –

Rendering Water as a Post-

Process Effect

 CS562 – Report
 Mikel Sertutxa

6

Specular
 Specular component helps to give water volume. The paper suggests to compute the reflection of

the view and use this to compute the dot product with the light direction. After that, the author uses the

next modified version of the specular:

float dotSpec = clamp(dot(mirrorEye.xyz, -lightDir) * 0.5 + 0.5, 0.0, 1.0);

specular = (1.0 - fresnel) * clamp(-lightDir.y, 0.0, 1.0) * ((pow(dotSpec, 512.0)) * (shininess

* 1.8 + 0.2));

specular += specular * 25 * clamp(shininess - 0.05, 0.0, 1.0);

Fresnel
 The Fresnel term is needed to add reflection and refraction colors. This terms describes how much

light refracts and reflects when passing from one medium to another, in this case, from air to water. It

can be computed as follows:

𝑐 = cos(𝛼) ∗
𝑛𝑎
𝑛𝑏

𝑔 = √1 + 𝑐2 − (
𝑛𝑎
𝑛𝑏
)
2

𝑅(𝛼) =
1

2
(
𝑔 − 𝑐

𝑔 + 𝑐
)
2

(

 1+ [
𝑐(𝑔 + 𝑐) − (

𝑛𝑎
𝑛𝑏
)
2

𝑐(𝑔 − 𝑐) + (
𝑛𝑎
𝑛𝑏
)
2]

2

)

Where 𝛼 is the angle between the normal and the incident ray and
𝑛𝑎

𝑛𝑏
 is the difference between

indices of refraction between air and water. However, these computations are really expensive, so it

proposes to use the following simplification:

𝑅(𝛼) = 𝑅(0) + (1 − 𝑅(0)) ∗ (1 − cos (𝛼))5

 Where R(0) is equal to
𝑛𝑎

𝑛𝑏
. So, finally to add all the results do the following:

𝐹𝑖𝑛𝑎𝑙𝐶𝑜𝑙𝑜𝑟 = 𝑓𝑟𝑒𝑠𝑛𝑒𝑙 ∗ 𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝐶𝑜𝑙𝑜𝑟 + (1 − 𝑓𝑟𝑒𝑠𝑛𝑒𝑙) ∗ 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑙𝑜𝑟 + 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟

 There is a problem, though. These will give us hard waves, which is not what realistic water looks

like. To correct this, make a last blend between the obtained color and the refraction, using the

multiplication between the accumulated water and shore hardness (a user defined variable) as the lerping

factor. In this way, the user can select how hard the waves should be.

Foam
 Finally, the paper suggests implementing foam. There are two types of foam: foam dependent on

depth or on height. The first one is applied by having a range defined by the user, where if the height is

higher than the minimum height, then foam will be applied. Instead, if it is in the in-between, use linear

lerp to fade out little by little the foam texture. The one that depends on height is computed with the

following function:

 CS562 – Report
 Mikel Sertutxa

7

𝐹𝑜𝑎𝑚𝐻𝑒𝑖𝑔ℎ𝑡 = 𝑐𝑙𝑎𝑚𝑝 (
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙 − 𝐻0

𝐻𝑚𝑎𝑥 −𝐻0
, 0,1)

 Both foams need to be added with the final color.

MY IMPLEMENTATION

 At the beginning, I started working with the first paper. But, later on, I decided to change the

paper. This are the results I was getting with this approach.

First paper’s implementation:
 I started by creating the radial mesh on the CPU as explained before. So, whenever I was drawing

the water, I was rendering these created radial grid on the position of the camera (ignoring the y-

coordinate). In this way, I get the LOD. Then, in the vertex shader, I transform these points to Cartesian

and modify them using the height given by the height map. These are the results:

 Of course, this is a very early implementation, but the radial mesh works well. The problems came

with the normal. The paper does not explain how we can obtain them. It just says that by tilting to the

camera is more than enough. Moreover, as I was working with geometry, smoothing water was headache,

as the only solution I could find was by increasing the quality, which goes against the idea of having a

radial mesh. So, finding for possible solution, I came across with the second paper.

Implementing the second paper:
 I discarded everything except from the height map pre-pass, as this second paper does not specify

how the height maps are obtained.

Rendering Pipeline
 I needed to once again reorganize my pipeline. I decided to render the water after lighting. In this

way I was simplifying the use of frame buffers. But, its drawback is that the water cannot be affected by

Radial Mesh

water– My

Framework

 CS562 – Report
 Mikel Sertutxa

8

other lights than the sun. The height map and reflection pass do not really depend on any pass, so I just

do them before the water pass. The water rendering needs a lot of textures: Depth buffer from the

GBuffer, result of the lighting (used as back buffer on refraction), reflection map, height map, normal map

and 2 for the foam (one per type). The computations will take place only on a fragment shader.

 Water Surface
 Once in the fragment shader, I compute the world position of the depth buffer position as seen

in class. I decided to make the computations on world space as it was easier for me to understand.

 Regarding the intersection between the plane and the view vector, at the beginning I was doing a

complete intersection with dot products. However, taking into the account the plane is flat and that its

normal is only pointing upwards, I decided to make these computations on the y-axis.

Pseudocode:

//Take view to the fragment
const vec3 view = normalize(pos - cameraPosition);

//Intersection between view and the sea level plane
const float denominator = view.y;

//Distance from camera to intersection
float d = (currentLevel - cameraPosition.y) / denominator;

//Compute intersection in sea level
vec3 surface = cameraPosition + view * d;

//Loop with intersections intersections
for(int i = 0; i < N; ++i)
{
 float height = texture2D(Bump, (surface.xz + view.xz) / size).x;
 height *= MaxWaveHeight / N;

 currentLevel += height;

 //Distance to the new sea level
 d = (currentLevel - cameraPosition.y) / denominator;

 //Compute new surface point
 surface = cameraPosition + view * d;
}

 CS562 – Report
 Mikel Sertutxa

9

Note that I am dividing the texture coordinates by a size. This is to scale the height map and have

it repeating more or less times. Also, it may happen that N is not enough for our desired max wave height.

In this cases just increase its value.

Normal
 Once the surface is computed, computing the normal of the height map is straightforward:

//Compute the texture coordinates to be used from this point on
vec2 realUV = surface.xz / size;

//Take neighbour info
float westH = texture2D(Bump, realUV - vec2(mapIncrement.x, 0)).x;
float eastH = texture2D(Bump, realUV + vec2(mapIncrement.x, 0)).x;
float northH = texture2D(Bump, realUV + vec2(0.0, mapIncrement.y)).x;
float southH = texture2D(Bump, realUV - vec2(0.0, mapIncrement.y)).x;

vec3 normalHeightMap = normalize(vec3((westH - eastH), NormalScale, (southH - northH)));

However, as I explained before this will not give good results. It will look like plastic. So to fix it, I

implemented normal maps.

Without Normal Map – My Framework With Normal Map – My Framework

Artifacts with

low iterations –

My Framework

 CS562 – Report
 Mikel Sertutxa

10

So compute the normal from the normal map as explained by Schüler on its article. The following

code it is taken from the article. It is not that hard to get as it follows the formula explained above:

//Take the edges of the surface
vec3 dViewX = dFdx(view);
vec3 dViewY = dFdy(view);
vec2 dU = dFdx(realUV);
vec2 dV = dFdy(realUV);

//Compute the perpendiculars of these edges
vec3 dViewYPerp = cross(dViewY, normalHeightMap);
vec3 dViewXPerp = cross(normalHeightMap, dViewX);

//Solve system to get tangent and bitangent
vec3 tangent = dViewYPerp * dU.x + dViewXPerp * dV.x;
vec3 biTangent = dViewYPerp * dU.y + dViewXPerp * dV.y;

//Compute the inverse of the determinant,
//but only taking the scalar of both tangent and bitangent
float inverseDet = 1.0 / sqrt(max(dot(tangent, tangent), dot(biTangent, biTangent)));

//Compute the tangent to world matrix
mat3 tangentToWorld = mat3(tangent * inverseDet, biTangent * inverseDet, normalHeightMap);

//Return the normal from the normal map
return normalize(tangentToWorld * (2.0 * texture2D(NormalMap, realUV).rgb - 1.0));

Finally, using these function, I sampled with different frequencies the normal map, following the

same idea of the height maps, to get a good enough result.

Optics
 To get the reflection, I am rendering the geometry with a camera underwater and rotated as

explained above. However, to this reflected scene, I am not applying lighting. I only apply global ambient.

In this way, fidelity is lost in favor of performance. Also, I only need the diffuse texture, so using a render

buffer and a color attachment is more than enough.

 Once the scene is rendered, I project the surface point and get the texture coordinates in the

following way:

//Project surface onto the flipped camera perspective
vec4 reflectionUV = WorldToWindowReflection * vec4(surface.x, surface.y - currentLevel,
surface.z, 1.0);

//Perspective division
reflectionUV.xy = reflectionUV.xy / reflectionUV.w;

//Between 0 and 1 to use it as texture coordinates
reflectionUV.xy = 0.5 * reflectionUV.xy + 0.5;

//Sligthly modify the texture coordinates to acess the reflection map
/*
...
*/

const vec3 reflectionColor = texture2D(ReflectionMap, modifiedReflectionUV.xy).rgb;

 CS562 – Report
 Mikel Sertutxa

11

 As we can see on the code, the process is really simple. Obtaining the refraction is even easier as

it is only to get the color from the diffuse texture and apply the formulas developed above. It is important

to mention, though, that the modifications on the reflection and refraction map need to be carefully done.

In my case, I was applying a sin to both axes, but this led to artifacts when moving the camera (as the

sinusoidal transformation was also moving).

 There is not much to mention on the Fresnel computation. Just compute it with the formula

explained above, taking into account that the view vector needs to be recomputed, as we are no longer

working with the original geometry, but the water surface. Also, I am computing the specular component

with Blinn Phong instead of the one suggested, as it already gives good results.

Foam
 Foam is really simple to obtain. I use different textures for height and depth foam. Both scalars

are obtained as the following:

//Height foam
float foamH = clamp((currentLevel - FoamMinHeight) / (MaxWaveHeight - FoamMinHeight),
0.0, 1.0) * 0.2;

//Depth foam
float foamDepth = 0.0;

if(waterDepth < FoamAlways)
 foamDepth = 1.0;
else if(waterDepth > FoamAlways && waterDepth < FoamStart)
{
 foamDepth = (waterDepth - FoamAlways) / (FoamStart - FoamAlways);
 foamDepth = mix(1.0, 0.0, foamDepth);
}

 However, how I apply them is quite different. Instead of following the paper recommendation, I

decided to apply the height foam by adding it to the color, whereas the depth is mixed at the end of the

code using as the mixing factor the foam depth we just computed.

HOW TO USE
 I used the framework of the assignments, so you will find similar controls. These are the controls:

W, S: Go forward and backward

A, D: Go left and right

Mouse Wheel: Go up and down

Mouse Right Button (Held): Rotate Camera

R: Restart Scene

F5: Reload Shaders

On the demo you will find a lot of variables that can be changed. This is what they are and do:

 Display: Shows what it is rendering onto screen.

 CS562 – Report
 Mikel Sertutxa

12

 Wave:

o Wave Type: Different height maps to choose from.

o Modify Geometry: This is a little experiment mixing both approaches. It is totally wrong.

o Max wave height

o Iterations: The iterations that the algorithm does to find the wave surface.

o Wave Texture Size: These value will be used to scale the height map texture.

o Normal Scale: These will control how smooth or rough the normal is

 Refraction:

o Visibility: Makes the shallow waters more crystalline or muddier

o Extinction: Controls how each color component extincts in the deep water.

o Shore Hardness: Controls how hard the water is. If it is 0, the result would be just the

refraction.

 Specular:

o Shininess

o Specular or sun color

 Water Surface color: Color of shallow waters

 Depth Water color: Color of deep water

 Foam:

o Min Height: From this height to the max amplitude, foam will be blended.

o Min Depth: If depth is smaller than this, then foam will be applied.

o Dies out Depth: This is the depth where the foam starts to appear.

OTHER IMPLEMENTATIONS
 On this report I presented two approaches, both of them explaining how to obtain convincing

water when the camera is above it. But, what happens if we go below water? I think that the next logical

step, would be implementing a render pass when the camera is below a wave. In fact, my implementation

does not check if the camera is underwater, which leads to a strange result.

 To improve the look underwater, the most important thing are caustics. Caustics are optical

effects created when light intersects a transparent object, in our case water. To obtain this kind of effects,

the easiest way is by applying a caustic texture onto the surface, but from the sun’s light direction

perspective. As in reflection and refraction, it is important to slightly transform it over time to animate it.

If this effect is added with an atmospheric attenuation and a refraction of what it is above water, the

results will be really amazing.

Underwater Caustics – OpenGL

rendering of Underwater

Caustics

 CS562 – Report
 Mikel Sertutxa

13

 Apart from that, there is a way to obtain more realistic waves: Fast Fourier Transforms. The cost

will increase quite a lot, but the patterns created from sampling repeatedly the same height map will most

likely disappear. Of course, this is a whole new topic to explore. But, take into account that even this

approach will not be able of creating concave waves. Here is a height map created with FFT:

PROBLEMS

 As you have noticed, one of the biggest problem that I had is not knowing how to continue the

previous paper. Now I think that I would be able of making something with that approach, but when I was

implementing, no.

 The second approach, I find it easier and better explained. At first I was not understanding

correctly what a specific line was doing. To overcome this issue, I started thinking line by line what I was

doing, which improved my understanding on the paper and on the code. It is important to mention, that

the article “hides” some details on the sample code and I needed to understand why the author was

making certain things. But, the algorithms are quite simple in my opinion, so following it was quite easy.

 The harder part for me, was getting tangent and bitangents. So, that is why, I decided to read the

original articles to understand (and even improve) the suggestion of the paper. These articles are really

good documented, which helps a lot.

 Finally, I want to remark that it is not easy to get good looking water. Even if the code is well

implemented, I found myself self-doubting about if it was correct or not. The final results are great, but

could improve a lot.

CONCLUSION

 Overall the experience has been great. I do not like to left an implementation half way, but the

second paper was more appealing. Rendering as a post processing effect gives much more flexibility, as

its render pass can be located wherever you want. In my case, I implemented it after lighting, but easily it

could be implemented before of it and modify the GBuffer so that lighting can be applied in the light pass.

Making interactions between objects and water is easy too, as we only need to change the height map to

Height map created with FFT –

Simulating Ocean Water

 CS562 – Report
 Mikel Sertutxa

14

show them. Moreover, very different waters can be obtained just by changing variables. I like this

flexibility.

 Regarding performance, a lot of texture samplings need to be done. However, I think that overall

the algorithm is quite fast, as it only relays on height maps to work. Also, because it is implemented as a

post processing effect, in most cases, many computations will be saved, as the points that are not affected

by the water will be discarded.

 On the negative side, that much flexibility, makes it harder to obtain good results. A big part of

my work has been tweaking values until I found something interesting. So, if I wanted to use it for a game,

for example, I would for sure need to expend a lot of time adjusting it to it.

 CS562 – Report
 Mikel Sertutxa

15

BIBLIOGRAPHY
Kryachko, Y. (2005). Using Vertex Texture Displacement for Realistic Water Rendering. GPU Gems 2.

NVIDIA.

Wojciech Toman and Myopic Rhino (2009). Rendering Water as a Post-process Effect. Gamedev.net.

Retrieved December 14, 2020, https://www.gamedev.net/articles/programming/graphics/rendering-

water-as-a-post-process-effect-r2642/

Christian Schüler (2013). Followup: Normal Mapping Without Precomputed Tangents. The Tenth Planet.

Retrieved December 13, 2020, http://www.thetenthplanet.de/archives/1180

3Bulue1Brown (2018). But what is the Fourier Transform? A visual introduction. Youtube. Retrieved

December 13, 2020, https://youtu.be/spUNpyF58BY

Mark Kilgard. OpenGL-rendering of Underwater Caustics. OpenGL. Retrieved December 14, 2020,

https://www.opengl.org/archives/resources/code/samples/mjktips/caustics/

Tessendorf, J. (2001). Simulating Ocean Water.

https://www.gamedev.net/articles/programming/graphics/rendering-water-as-a-post-process-effect-r2642/
https://www.gamedev.net/articles/programming/graphics/rendering-water-as-a-post-process-effect-r2642/
http://www.thetenthplanet.de/archives/1180
https://youtu.be/spUNpyF58BY
https://www.opengl.org/archives/resources/code/samples/mjktips/caustics/

