
 Mikel Sertutxa
 CS500 – Report

 1

CS500 – Final Project: Deterministic 3D
Fractals

PROBLEM DESCRIPTION:

 The objective of the project is to build a 3D visualizer of fractals. For that, it is needed a

way for coloring them as well as a way for getting the structure information of them. The paper

explains how to get Julia sets, which is a specific family of the 3D fractals.

PAPER’S SOLUTION:

 The paper ‘Ray Tracing Deterministic 3-D fractals’ by John C. Hart, Daniel J. Sandin and

Louis H. Kauffman, gives a solution that makes use of ray marching.

Ray marching

 Ray marching is a technique that makes small steps from the ray origin in the given

direction and checks if each iteration point is on the geometry or not. For speeding up,

unbounding sphere volumes can be used. These are spheres that do not enclose any kind of

geometry. So, by computing them in each iteration, the ray can advance the given amount of

distance. The radius of these spheres will be computed with distance estimators. Ray marching

can be really slow with the scenes used during the course, as it needs to make the intersection

checks more than once per ray thrown. However, if complex geometries like fractals are being

drawn, this comes in handy, as it only needs to estimate the distance to them.

Ray Marcher Sketch –

pouet.net

 Mikel Sertutxa
 CS500 – Report

 2

Once a collision happens, the normal needs to be computed (mostly for lighting

computations). For getting the normal of the surface, the paper suggests two ways. On the one

hand, it suggests to approximate the normal with a cross product with two vectors of the surface.

On the other hand, it suggests to compute the gradient by taking near surface points with a

defined epsilon. The second one is a better option, as it does not need the z-buffer, which is

something not needed in ray tracing.

𝑁𝑥 = 𝑑𝑒(𝑧𝑥+𝜀,𝑦,𝑧) − 𝑑𝑒(𝑧𝑥−𝜀,𝑦,𝑧)

𝑁𝑦 = 𝑑𝑒(𝑧𝑥,𝑦+𝜀,𝑧) − 𝑑𝑒(𝑧𝑥,𝑦−𝜀,𝑧)

𝑁𝑧 = 𝑑𝑒(𝑧𝑥,𝑦,𝑧+𝜀) − 𝑑𝑒(𝑧𝑥,𝑦,𝑧−𝜀)

Complex Numbers

 The paper explains how to draw Julia sets using ray marching, but for that, first a simple

understanding on complex numbers is needed. A complex number is composed on 2

components: a real part and an imaginary one. This number can be represented on the complex

plane as we represent a 2D vector:

 The mathematical operations are also different. The addition is defined as the addition of

each components separately (as in the vector spaces). However, the multiplications are a little

bit tricky. Multiplications are similar to the ones between polynomials, but with a particularity: If

we multiply two imaginary numbers, then the result will be minus one. Here we have an example:

(2 + 𝑖) ∙ (1 + 3𝑖) = 2 + 6𝑖 + 𝑖 + 3(𝑖𝑖) = 2 + 7𝑖 − 3 = −1 + 7𝑖

Complex Plane – Paint.net

 Mikel Sertutxa
 CS500 – Report

 3

Quaternions

 However, for drawing 3D fractals, another type of complex numbers are used, as the

presented ones can only be represented in 2D. For that, quaternions come to the rescue.

Quaternions are complex numbers composed by a real and 3 imaginary elements. Note that as

the rendering will be in 3D and quaternions are in 4D, only a slice of it will be rendered.

 The operations between quaternions are the same than for the complex numbers, but

with extra rules for the multiplications. Here are all the rules to take into account:

𝑖2 = 𝑗2 = 𝑘2 = −1;

𝑖𝑗 = 𝑘; 𝑗𝑘 = 𝑖; 𝑘𝑖 = 𝑗; 𝑗𝑖 = −𝑘; 𝑘𝑗 = −𝑖; 𝑖𝑘 = −𝑗;

Julia Sets

Julia sets are a group of fractals obtained by iterating complex numbers (in our case

quaternions) in a holomorphic function. Holomorphic functions are functions that take complex

numbers are return complex numbers, but with the particularity that are differentiable in all the

domain. This detail is important, as the distance estimator to these fractals will need the

derivative of the holomorphic function. The function used on the paper is the classical quadratic

formula:

 𝑓(𝑧) = 𝑧2 + 𝑐

Distance Estimator

 The paper defines a lower bound for the quadratic family of fractals in the following

way:

𝑑𝑒(𝑧) = 0.5 ∙ ln(|𝑓𝑛(𝑧)|) ∙
|𝑓𝑛(𝑧)|

|𝑓′𝑛(𝑧)|

 In fact, this is the distance estimator that needs to be used on the algorithm. For that, the

nth iteration of the quadratic formula seen before and its derivative are needed. The derivative is

obtained in the following way:

𝑓(𝑧) = 𝑧2 + 𝑐

By the chain rule: 𝑓′𝑛(𝑧) = 2 ∙ 𝑓𝑛−1(𝑧)𝑓′𝑛−1(𝑧)

 Mikel Sertutxa
 CS500 – Report

 4

MY SOLUTION:

 First, I started implementing the ray marcher. It is a simple class that takes a ray, a

function pointer to a distance estimator and makes user defined amount of iterations. If more

iterations are made, the more accurate the result will be. When the distance of the unbounding

volume is smaller than the user defined epsilon, then it collided. In this case the normal of the

surface will be computed using the gradient. Pseudo code:

There is a difference with the paper in the way the gradient is computed, though. Instead

of computing the gradient between the points around in both directions, it only takes them in

one direction and use the current computed one. The result is almost the same and some

computations costs are saved.

If collided, compute

the gradient

Take the farthest point possible and

perform the distance estimator for it

 Mikel Sertutxa
 CS500 – Report

 5

For testing it, I implemented a simple infinite

sphere distance estimator, giving already interesting

results. With a simple modulus on the intersection

against a sphere, suddenly, we get infinite many

spheres, without almost extra computations. To

render this in the traditional ray tracing, would be

really slow.

After ensuring that the ray marcher was

working, I implemented some 2D fractals on

shadertoy. I made it to understand better how

fractals work.

Here are attached my results:

Mandelbrot set
 drawn with shadertoy

Julia Set (c = -0.8 + 1.156i)

drawn with shadertoy

Infinite Spheres – My
Ray Marcher

 Mikel Sertutxa
 CS500 – Report

 6

 To obtain these results, the program will iterate through all the pixels and for each of

them, it will perform the quadratic formula explained on the paper, using the x as the real

component and the y as the imaginary. In this way, if during this iterations it ends bounded, it

will be drawn in red, if not it will be shown in black. I found interesting how the only difference

between the Mandelbrot and Julia sets is the c on the quadratic formula. In Mandelbrot sets, the

c will be equal to z while in the Julia sets, c will be equal for all the points. In fact, the Julia and

Mandelbrot sets are very closely related.

In 3D however, the images are obtained applying the distance estimator explained above.

For that, the nth iteration and its derivative needs to be computed using a for loop. In this for

loop, each iteration will be computed until the maximum iterations are done or the point is

farther from the origin than the escape radius. These points are not interesting, as they will tend

to go to infinite (in other words, they are not part of the fractal). After the loop the distance

estimator formula is computed. Pseudo code:

Compute the square of a quaternion

using the rules explained above

Compute the next iteration point

Compute the next derivative

If it is bigger than the escape radius, exit

Finally, apply the lower bound distance

estimator to the complex planes

 Mikel Sertutxa
 CS500 – Report

 7

This Julia set is drawn using the

above code. The coloring is implemented

using the default Phong model. Also, it uses

super sampling to get smoother results (as

it tends to be a little nosier).

 Basically, with this, the project is

done. The ray marcher is able of drawing

Julia sets and coloring them. However, I

wanted to experiment with the project and

learn more cool staff. In the next apart, it is

explained what extra things are

implemented on the ray marcher.

EXTRA THINGS:

Sierpinski Tetrahedron

 First, let’s talk about the Sierpinski Tetrahedron. This is a typical fractal that shows

tetrahedrons inside of other tetrahedrons infinitely. As it is explained in the fantastic blog

‘Distance Estimated 3D Fractals’ by Mikael Hvidtfeld Christensen, it can be approached through

a distance estimator that uses folding operations. These operations will take the mirror points

using the symmetry planes below in order to pass all the points to the same octant and then scale

from a specified point.

Julia Set (c = -0.8) – My
Ray Marcher

Symmetry

Planes

Symetry points

being mapped

Folding Space –
Distance Estimated 3D

Fractals

Scale Point

 Mikel Sertutxa
 CS500 – Report

 8

 On the left is the result of the ray marcher. I

have problems drawing it though. I needed

to readjust the iterations and the escape

epsilon a lot of times until it gave me these

result.

 However, we can go farther with this kind of

fractals. As knighty explains in a post in

fractalforums.com, we can get interesting

results only by changing the folding

operation, by adding rotations or even

changing the scaling point. So, I decided to

add rotations and the adjustable scale point

onto the ray marcher.

The following are some of the results I get using rotations:

Sierpinski
Tetrahedron – My

Ray Marcher

Tetrahedrons with
rotations – My Ray

Marcher

 Mikel Sertutxa
 CS500 – Report

 9

Mixing Julia Sets

Apart from this, I also make a small experiment of mixing two Julia sets. This is made by

taking the minimum distance between two different sets. Although, the results are not that

interesting, this is really easy to implement. Here a result:

Mix of Julia Sets –
My Ray Marcher

 Mikel Sertutxa
 CS500 – Report

 10

Orbit Traps

 The last thing I implemented on the ray marcher are orbit traps. I did not go very in depth

on them, though. In the article “Geometric Orbit Traps” by Inigo Quilez it is explain that the orbit

traps are just the minimum distance between a geometric structure (usually points, lines or

planes) and the points computed on each iteration. For example, we could store in the red

component the distance from the point to the X axis, on the green to the Y axis and on the blue

to the origin. Or even use them to access a texture. In this way, the fractals will look more

interesting. Here is a possible orbit trap pseudo code:

 And here we have some interesting results:

Per each iteration, close the

closest distance in each case

Orbit Traps –
My Ray

Marcher

 Mikel Sertutxa
 CS500 – Report

 11

HOW TO USE

 The program is works in a similar way to the last project. There is a scene file where the

camera, lights, surface properties and attenuation can be changed. They are formatted on the

following way:

 LIGHT: <position >, <diffuse color>, <radius>

 CAMERA: <position>, <u vector>, <v vector>, <eye length>

 SP: <ambient color>, <diffuse color>, <specular reflection>, <specular exponent>

 ATTENUATION: <attenuation color>

There is also a configuration file, where a lot of things can be changed regarding the ray

marcher:

 Scene: Select the scene file to use

 Window: 1 if window activated, 0 if not

 WindowSize: Select the window size (if window activated

 Shadow: 1 if hard shadows activated, 0 if not

 AntialisingSideSamples: The side of the super sampling. For example, if 2, then 2x2

samplings.

 RayMarchingIterations: How much iterations the ray marcher will do on each ray

thrown.

 EpsilonOfDistanceEstimator: Epsilon for the ray marcher

 DistanceEstimator: We can select a distance estimator from the followings:

0. Tetrahedron

1. Tetrahedron with rotations

2. Infinite spheres

3. Julia sets

4. Mix of Julia sets

 ActivateOT: 1 if render with orbit traps, 0 if not

 OTType: Diferent types of orbit types from 0 to 4. The 4th is the one drawn with

textures. The texture can be changed by overwriting ‘Texture.png’ image.

 RotationBF: Rotation before folding is performed (in Euler angles)

 RotationAF: Rotation after folding is performed (in Euler angles)

 Scalepoint: Point from which to scale tetrahedron

 FractalC: C constant for the fractal <real part>, <imaginary part>

 FractalC2: C constant for the 2nd fractal on the mix <real part>, <imaginary part>

(On the BIN folder I attached some interesting configurations. Copy them to Configuration.txt to use them)

 Mikel Sertutxa
 CS500 – Report

 12

OTHER IMPLEMENTATIONS

 Using distance estimators for rendering Julia sets is by far the most popular way of doing

it, as it is a fast enough way and gives good results. Moreover, as it uses ray marching, it can be

inside of a bigger project done by using this rendering method. However, to use distance

estimators, first they need to be computed, which in some cases is not that trivial.

 So, in this cases, a brute force approach could be worth it. Referring to the blog post by

Mikael Hvidtfeld Christensen ‘Rendering 3D Fractals without a distance estimator’ there is a way

of drawing them without these distance estimators, but for that a way of knowing if the point is

inside of the geometry is needed. In this post, Mikael explains an algorithm that consists on taking

random points on the given ray direction. If this point is inside of the geometry, then it will only

take nearer points, as the nearest point from the ray origin is the one to be obtained.

 Of course, this algorithm is much slower, but as said before, it could have its uses with

some complex systems. What I do not understand, though, is why to take random points instead

of implementing the raw ray marcher. It is not easier if small steps are taken in the given ray

direction instead of random numbers? It is true that the result can differ a lot depending in the

step size and that if what is wanted is to have a general method, it could be problematic to select

the correct size. But, still it gives quite good results.

Brute Force – Rendering 3D Fractals
without distance estimator

 Mikel Sertutxa
 CS500 – Report

 13

PROBLEMS ENCOUNTERED

 The biggest problem I had on the project was with the math. It is very depth math and at

the beginning I did not have any understanding on fractals. That is why making first 2D fractals

was essential, as I understood the basics of the topic.

 In addition, I found it hard to test. In most cases I was only getting black screens and

debugging it was a nightmare. There are many iterations and to go one by one was not an easy

tasks.

However, apart from this problems, I did not have big issues to get the final results. There

is a lot of information on the internet that helps a lot.

CONCLUSION

 In conclusion, the project was an interesting journey. I am glad that I select this topic, as

I learned a lot. Using distance estimators for rendering 3D fractals is a very big subject and yet I

have a lot to learn, but as the first approach to it, I think that I get interesting results.

 Distance estimators are quite fast, easy to use and portable, as they can be exchanged

with a different estimators without needing to change the ray marcher. Another good reason of

using ray marching is that Phong lighting is still supported, as well as reflections. This comes in

handy, as changing from traditional ray tracing to ray marching has been easy. The biggest

problem is developing and understanding these estimators, as they can have heavy math. But,

they totally worth it.

Finally, I want to mention orbit traps. I think that they are the optimal way of rendering

fractals, not only because they look prettier, but because they give more information from the

geometry itself, making it easier to understand how they work. They also are very easy to

implement.

 Mikel Sertutxa
 CS500 – Report

 14

BIBLIOGRAPHY

Hart, J. C., Sandin, D. J. and Kauffman, L. H. (1989). Ray Tracing Deterministic 3-D Fractals. Computer

Graphics, 23(3), 289-296.

Dang, Y., Kauffman, L. H., Sandin, D. (2002). Hypercomplex Iterations, Distance Estimation and Higher

Dimensional Fractals. Singapore: World Scientific Publishing Co Pte Ltd.

Christensen, M. H. (2012) Distance Estimation. Retrieved March 21, 2020, from http://blog.hvidtfeldts.-

net/index.php/category/distance-estimation/

Quilez, I. (2002) Animated orbit traps. Retrieved April 7, 2020, from https://www.iquilezles.org/www/-

articles/ftrapsgeometric/ftrapsgeometric.htm

Quilez, I. (2013) Julia - Quaternion. Retrieved March 30, 2020, https://www.shadertoy.com/view/MsfGRr

CodeParade (2018) How to Make 3D Fractals. Retrieved March 29, 2020, https://www.youtube.com/-

watch?v=svLzmFuSBhk&t=316s

The Art of Code (2018) The Mandelbrot Fractal Explained!. Retrieved March 28, 2020, https://www.you-

tube.com/watch?v=6IWXkV82oyY&t=9s

http://blog.hvidtfeldts.-net/index.php/category/distance-estimation/
http://blog.hvidtfeldts.-net/index.php/category/distance-estimation/
https://www.iquilezles.org/www/-articles/ftrapsgeometric/ftrapsgeometric.htm
https://www.iquilezles.org/www/-articles/ftrapsgeometric/ftrapsgeometric.htm
https://www.shadertoy.com/view/MsfGRr
https://www.youtube.com/-watch?v=svLzmFuSBhk&t=316s
https://www.youtube.com/-watch?v=svLzmFuSBhk&t=316s
https://www.you-tube.com/watch?v=6IWXkV82oyY&t=9s
https://www.you-tube.com/watch?v=6IWXkV82oyY&t=9s

